
108

ISSN 0005-1055, Automatic Documentation and Mathematical Linguistics, 2018, Vol. 52, No. 2, pp. 108–112. © Allerton Press, Inc., 2018.
Original Russian Text © A.Yu. Shcherbakov, 2018, published in Nauchno-Tekhnicheskaya Informatsiya, Seriya 2: Informatsionnye Protsessy i Sistemy, 2018, No. 4, pp. 00000–
00000.

Development of Means for the Formation
of a Corporate Distributed Register (Blockchain)

A. Yu. Shcherbakova

aFederal Research Center Computer Science and Control, Russian Academy of Sciences, Moscow, 119333 Russia
e-mail: x509@ras.ru

Received February 19, 2018

Abstract—The problem of developing methods for forming the atoms of a corporate distributed register
(blockchain), which provides secure distributed storage of data in an associated chain, is discussed; an exam-
ple of the application of the proposed methods for the implementation of a conditional tax payment through
a smart contract is considered.

Keywords: blockchain, distributed data storage, information security, e-voting, encryption, integrity control,
smart contract, development tools for blockchain
DOI: 10.3103/S0005105518020085

INTRODUCTION

For system integrity, a blockchain must consist of
separate elements, links, each of which in turn is
divided into elementary components (in [1] these are
called blockchain atoms). Atoms as elements that are
associated or embedded in a computer system can be
passive and active.

BLOCKCHAIN STRUCTURE

Blockchain atoms are characterized by an identifier
(name) and have the properties that are required both
to form links and an entire chain and to implement the
properties of the computer (information) system that
uses the blockchain, for example, the properties of pri-
vacy of user data placed in the distributed register. It
should be noted that the currently existing blockchain
systems do not provide the property of information
confidentiality.

Let us identify the following types of blockchain
atoms.

1. A boundary atom (the beginning or the end) of
the blockchain: contains references to the end of the
previous link or the beginning of the next one.

2. A structure atom defines and describes the vec-
tor of identifiers of atoms that exist in the link and log-
ically follows the boundary atom (the beginning).

3. A data atom contains description of the data
interpreted as a passive component of the link. A vari-
ety of data atoms are:

• An open data atom (OD atom) is characterized by
length and contains data not subject to any processing;

• An integral data atom (ID atom) is characterized
by the length of the data of the fixed integrity and an
identifier or a reference to the data integrity control
procedure;

• A signed data atom (SD atom) is characterized by
the length of the signed data: an identifier or a refer-
ence to the signature verification procedure for data,
as well as a reference to the signature verification key.
The signature verification procedure can be specified
externally with respect to the blockchain or be a sub-
ject atom;

• An encrypted (restricted) data atom (RD atom)
is characterized by the length of the encrypted data: an
identifier or a reference to the procedure of data
encryption/decryption, as well as an encryption or
decryption key;

• A signature atom contains the signature of an
atom or several atoms: “signed data” with a given
identifier (identifiers);

• A hash atom contains the integrity control stan-
dard for an atom or several “integral data” atoms with
a given identifier (identifiers).

4. A subject atom contains description of the data
interpreted as an active component of the link.

A subject atom can be:
• a scenario atom that contains the interpreted

code for performing operations on data atoms;
• an executor atom that contains the compiled

code for the actual processor, a hypervisor of the com-
puter system, or a machine atom in which the block-
chain is processed;

• a machine atom that contains the environment for
the execution of the scenario atom or executor atom.

TEXT PROCESSING AUTOMATION

AUTOMATIC DOCUMENTATION AND MATHEMATICAL LINGUISTICS Vol. 52 No. 2 2018

DEVELOPMENT OF MEANS FOR THE FORMATION 109

Next, let us consider the elementary modules that
are necessary for the formation of the corresponding
atoms. It is important to note that in this case we are
talking about the corporate distributed register, since
in general-purpose blockchains the atoms are formed
in a different way. However, the proposed technology
makes it possible to protect data in general-purpose
blockchains as well, where the information is pre-
formed with the modules considered here and then is
placed in the blockchain.

ELEMENTARY MODULES
FOR THE FORMATION OF CORPORATE

BLOCKCHAIN ATOMS
A module for primary formation of an initial ran-

dom number and a personal identifier for the user
InitUser
Format of use:
InitUser FileUserID UserPIN <RandomString>,
where:
FileUserID is the name of the file with the pass-

word-restricted personal identifier of the user
(may be associated with the user’s name),

UserPIN is the password (PIN code or method of
its input, for example, reading from a USB-
token) for restricting the personal identifier of
the user,

<RandomString> is an optional parameter for
improving the operation of the random-number
generator (“accelerating line”).

This module creates a random.bin file for further
use of the random-number generator and a file with
the password-restricted personal identifier of the user
(in fact, a protected container for storing and transfer-
ring the user’s personal identifier).

This module returns typed errors that are needed to
integrate module calls into a smart contract.

Returned errors:
• 1, an error during testing of protection modules,
• 2, a call-format error,
• 3, the identifier file already exists,
• 4, a random-number generation error,
• 5, an random-number updating error,
• 6, a user-file writing error,
• 7, a user-file control read error.
Modules of formation of blockchain atoms
GenAtomХ
This module generates a closed data atom from open

data using the user’s personal identifier, an X-type
atom.

Format of use:
GenAtomХ FileUserID UserPIN file_or_string

AtomFile,

where:
FileUserID is the name of the file with the pass-

word-restricted personal identifier of the user,
UserPIN is the password for restricting the user’s

personal identifier,
file_or_string is the information to be placed in the

RD (restricted data) atom, restricted in the user’s per-
sonal identifier,

AtomFile is the file into which the atom is written.
This module employs a file with the password-

restricted personal identifier of the user, opens it and
builds a blockchain atom according to the protocol.

Returned errors:
• 1, an error during testing of protection modules,
• 2, a call-format error,
• 3, the user’s identifier file does not exist,
• 4, a random-number generation error,
• 5, the atom file already exists,
• 6, an incorrect PIN code,
• 7, an atom-writing error,
• 8, an atom control reading error,
• 9, a random-number updating error.
GenAtomY
This module generates a restricted data atom from

open data using random data to achieve a specified
time (PoW), a Y-type atom.

Format of use:
GenAtomY file_or_string AtomFile Power,
where:
A file_or_string is the information to be placed in

the RD (restricted data) atom, restricted in a random
number of a given length,

AtomFile is the file into which the atom is written,
Power is a two-digit number that provides PoW

(18–22 is recommended for testing).
Returned errors:
• 1, an error during testing of protection modules,
• 2, a call-format error,
• 4, a random-number generation error,
• 5, a random-number updating error,
• 6, the atom file already exists,
• 7, an atom-writing error,
• 9, a random-number updating error.
GenAtomН
This module generates a hash atom (integral data

atom) from open data using the user’s personal identi-
fier, an H-type atom.

Format of use:
GenAtomХ FileUserID UserPIN file_or_string

AtomFile,

110

AUTOMATIC DOCUMENTATION AND MATHEMATICAL LINGUISTICS Vol. 52 No. 2 2018

SHCHERBAKOV

where:
FileUserID is the name of the file with the pass-

word-restricted personal identifier of the user,
UserPIN is the password for restricting the user’s

personal identifier,
file_or_string is the information to be placed in the

hash atom, a function from open data, calculated with
the help of the user’s personal identifier,

AtomFile is the file into which the atom is written.
Returned errors:
• 1, an error during testing of protection modules,
• 2, a call-format error,
• 3, the user’s identifier file does not exist,
• 4, a random-number generation error,
• 5, the atom file already exists,
• 6, an incorrect PIN code,
• 7, an atom-writing error,
• 8, an atom control reading error,
• 9, a random-number updating error.
Modules for extracting data from blockchain links
ExcX
A module for extracting data from an X-type atom.
Format of use:
ExcX FileUserID UserPIN AtomFile Result,
where:
FileUserID is the name of the file with the pass-

word-restricted personal identifier of the user,
UserPIN is the password for restricting the user’s

personal identifier,
AtomFile is the file into which the RD atom is

placed,
Result is the file with recovered data.
This module has the purpose of testing of their

actions by a user and audit of transactions by a user.
Returned errors:
• 1, an error during testing of protection modules,
• 2, a call-format error,
• 3, the user’s identifier file does not exist,
• 4, a random-number generation error,
• 5, the atom file does not exist,
• 6, an incorrect PIN code,
• 7, an atom-writing error,
• 8, an atom control reading error.
ExcY
A module for extracting data from a Y-type atom.
Format of use:
ExcY AtomFile Result,
where:
AtomFile is the file into which the RD atom is

placed,
Result is the file with recovered data.

This module has the function of allocating restricted
data with a specified labour intensity PoW.

Returned errors:
– 1, an error during testing of protection modules,
– 2, a call-format error,
– 3, the user’s identifier file does not exist,
– 4, a random-number generation error,
– 5, the atom file does not exist,
– 7, an atom-writing error.
СAtomН
This module checks the integrity of data using a pre-

computed hash atom via the user’s personal identifier.
Format of use:
GenAtomХ FileUserID UserPIN file_or_string

AtomFile,
where:
FileUserID is the name of the file with the pass-

word-restricted personal identifier of the user,
UserPIN is the password for restricting the user’s

personal identifier,
file_or_string is the information for integrity control,
AtomFile is the file into which the atom was written

that contains the control information from the data.
Returned errors:
• 1, an error during testing of protection modules,
• 2, a call-format error,
• 3, the user’s identifier file does not exist,
• 4, a random-number generation error,
• 5, the atom file already exists,
• 6, an incorrect PIN code,
• 7, an atom-writing error,
• 8, an atom control reading error,
• 9, a random-number updating error.
The Power calculation module
Cpower
Format of use:
Cpower Time
This module returns the number of bits required to

provide the labor intensity of Time minutes.
All modules generate text logs with the name of the

module.

THE CONCEPT OF SMART CONTRACTS
The first ideas about smart contracts were pro-

posed in 1996 by Nick Szabo [2]. Practical implemen-
tations became possible due to the emergence of
blockchain technology in 2008. Some principles of
smart contracts were formed in the protocol of the first
blockchain currency (crypto currency), the Bitcoin;
however, they were not implemented in the client soft-
ware, did not have Turing completeness due to secu-
rity reasons, and were not used in practice. With the

AUTOMATIC DOCUMENTATION AND MATHEMATICAL LINGUISTICS Vol. 52 No. 2 2018

DEVELOPMENT OF MEANS FOR THE FORMATION 111

development of the blockchain technology, there have
been ideas that various higher-level protocols can be
created over the Bitcoin protocol, including full smart
contracts, similar to how many application-level pro-
tocols exist over TCP/IP.

Smart contracts were first applied in practice in the
Ethereum project. The idea to create the project
occurred in 2013. At that time, V. Buterin, the founder
of Bitcoin Magazine, came to the conclusion that the
Bitcoin is poorly suited as a basic protocol since it was
not originally designed for this task; in one of his arti-
cles he wrote about the idea of creating such a protocol
from scratch.

We will assume that a smart contract is an execut-
able code with fixed integrity that is placed in an exec-
utor atom and operates with atoms and blockchain
links. At the same time, the result of the work of a
smart contract is always placed in a new atom or a
blockchain link. Otherwise, the ideology of the invari-
ability of the blockchain links will be disturbed.

AN EXAMPLE OF THE FORMATION
AND OPERATION

OF A SMART-CONTRACT CONSTRUCTED
FROM ELEMENTARY MODULES

We assume that the user nlp100 (taxpayer-100) has
a wallet with cryptocurrency (for paying taxes)
cnal100, which has 500 cryptorubles.

For test creation of a wallet, we use a smart contract:
genatomx nlp100_1 privet1 500 cnal100_u
genatomx nlp100_3 privet3 500 cnal100_b.
In a real payment system, creation of a wallet will

require carrying out actions coordinated with the
authorized bank or cryptocurrency operator to identify
the user, create a wallet, and credit the cryptocurrency.

The user fns (tax service) made a tax payment
invoice for nlp100 of 50 cryptorubles to the bank bank,
which was issued as a smart contract fns100_b.bat.

Initially the user creates their private key containers
for working with the wallet nlp100_1 to receive smart
contracts and notices from the tax service nlp100_2
and to exchange with the bank nlp100_3 using the ini-
tuser module.

A smart contract is a sequential call of methods
for creating blockchain atoms genatomx, which
deduct 50 cryptorubles from taxpayer-100’s wallet
and credit it to the bank account, forming the
atoms a1 and a2:

genatomx nlp100_1% 1 -50 a1
genatomx nlp100_3% 2 +50 a2.
It should be noted that a password or private key is

required to work with the wallet of the taxpayer, which
is indicated by the argument %1 (the password or the
key is entered by the user), respectively, the second
password or private key is needed for crediting funds to
the bank.

The tax service creates a container for exchange
with taxpayer-100, fns100, the bank opens a container
for exchange with taxpayer-100, bank100, and for
sending receipts for the tax service the bank creates a
container bfns.

To create containers, the following smart contract
is used:

inituser nlp100_1 privet1
inituser nlp100_2 privet2
inituser nlp100_3 privet3
inituser fns100 privet2
inituser bank100 privet3
inituser bfns privet4.
Passwords or methods for entering a private key are

used by the user to access their wallet: privet1, a private
key unknown to anyone other than the user; privet2,
for exchange with the tax service; privet3, for exchange
between the user and the bank; and privet4, for
exchange between the bank and the tax service.

The tax service forms the atom a0, which contains
the encrypted text of the smart contract fns100_b.bat:

genatomx nlp100_2 privet2 fns100_b.bat a0.
The taxpayer extracts the smart contract from the

atom:
excx nlp100_2 privet2 a0 user100.bat
and executes the contract user100.bat by entering

passwords or private keys instead of %1 and %2 to
access their wallet and make a transaction to the bank.

The contract creates blockchain links a1 and a2,
which contain an altered state of the taxpayer’s wallet
(a decrease of 50 cryptorubles) and an order to transfer
the required amount to the wallet of the bank.

The bank extracts from the atom the taxpayer’s
order for the account

excx nlp100_3 privet3 a2 b1.
The bank credits money to its wallet (crypto

account) and sends a confirmation to the taxpayer by
forming the next atom

genatomx nlp100_3 privet3 zachisleno=50 a3.
On the side of the taxpayer, the amount credited to

the bank is automatically deducted from the wallet:
genatomx nlp100_1 privet1 450 cnal100_u
genatomx nlp100_3 privet3 450 cnal100_b.
A new copy of the wallet is created with the value

450 = 500 – 50 according to the notification of the
bank.

The bank has the opportunity to verify in
cnal100_b that the amount in the wallet has changed:

excx nlp100_3 privet3 cnal100_b cnal100_t2.
On the side of the client (taxpayer), transactions

with the wallet are carried out only provided the bal-
ance of funds occurs, that is, where the wallets of the
client and bank contain the same amounts.

112

AUTOMATIC DOCUMENTATION AND MATHEMATICAL LINGUISTICS Vol. 52 No. 2 2018

SHCHERBAKOV

The balance is checked using the following smart
contract:

excx nlp100_1 privet1 cnal100_u cnal100_t1
excx nlp100_3 privet3 cnal100_b cnal100_t2.
The last operation is the formation of the confir-

mation atom a4:
genatomx bfns privet4 prinjato=nlp100 = 50 a4.
The tax service extracts the atom a4
excx bfns privet4 a4 b3
and receives a confirmation line of tax payment.
For real use, one must also enter a confirmation of

the bank payment to the treasury.
To demonstrate the voting system, the following

smart contract can be executed:
genatomx nlp100_1 privet1 Ivan_Ivanov g1
genatomx nlp100_2 privet2 Petr_Petrov g2
genatomy Ivan_Ivanov g3 19
genatomy Petr_Petrov g4 20
excx nlp100_1 privet1 g1 golos11
excx nlp100_2 privet2 g2 golos21
excy g3 golos12
excy g4 golos22.
For convenience, containers that were already cre-

ated are used.
First, votes for Ivan_Ivanov and Petr_Petrov are

formed, which are formed and available only to users
who have voted and then are available to everyone, but
with disclosure at the specified time, where for Petr_-
Petrov the disclosure time is on average twice as long.
The votes are then disclosed into the corresponding
files and compared.

The log of the excy function shows an approximate
difference in the vote extraction times: approximately
12 s and 31 s for the same percentage of searches
(about 30):

00:39:01 05.02.2018:Start excy

00:39:01 05.02.2018:Success Protect Function
00:39:01 05.02.2018:Ok Test Random
00:39:13 05.02.2018:RealCicle = 157705.000000
[Full cycles = 524288.000000] 30.079842 percent

of full cycles
Full time = 11.875000 sec
00:39:13 05.02.2018:Ok AtomFileY
00:39:13 05.02.2018:Start excy
00:39:13 05.02.2018:Success Protect Function
00:39:13 05.02.2018:Ok Test Random
00:39:44 05.02.2018:RealCicle = 410876.000000
[Full cycles = 048576.000000] 39.184189 percent

of full cycles
Full time = 30.861000 sec
00:39:44 05.02.2018:Ok AtomFileY.

CONCLUSIONS
The proposed technology makes it possible to form

almost the entire necessary range of blockchain atoms
and perform operations with them using the technol-
ogy of smart contracts. Cryptographic operations with
atoms should be implemented on the basis of domestic
crypto algorithms to ensure the warrant properties and
the possibility of subsequent certification and valida-
tion of the developed solutions by state regulators.

REFERENCES
1. Biktimirov, M.R., Domashev, A.V., Cherkashin, P.A.,

and Shcherbakov, A.Yu., Blockchain technology: Uni-
versal structure and requirements, Autom. Doc. Math.
Linguist., 2017, vol. 51, no. 6, pp. 235–238.

2. Szabo, N., Clever contracts (Fourth Value Revolu-
tion), Komp’yuterra, 1998, no. 38, pp. 12–19.

Translated by K. Lazarev

SPELL: OK

